
Multi-Class Boundary Extraction from Implicit Representations
Jash Vira

Andrew Myers
Simon Ratcliffe

Abstract
Surface extraction from implicit neural representations mod-
elling a single class surface is a well-known task. However,
there exist no surface extraction methods from an implicit
representation of multiple classes that guarantee topological
correctness and no holes. In this work, we lay the ground-
work by introducing a 2D boundary extraction algorithm
for the multi-class case focusing on topological consistency
and water-tightness, which also allows for setting minimum
detail restraint on the approximation. Finally, we evaluate
our algorithm using geological modelling data, showcasing
its adaptiveness and ability to honour complex topology.

1 Introduction
Implicit representations are widely used in computer graph-
ics and vision [6, 5] due to their ability to represent data,
such as images and complex shapes, in a continuous and
differentiable manner. Unlike discrete methods, implicit rep-
resentations can model fine details and smooth transitions,
allowing for evaluation at arbitrary resolutions.

Implicit surface discretisation has been an important area
of study with applications ranging from animation to scien-
tific simulation [1]. However, most existing methods focus on
surface extraction from binary-class implicit representations,
treating the problem as a simple inside-outside classification
[1, 4]. These approaches are insufficient for geology applica-
tions where boundaries shared by multiple classes must be
extracted. Such multi-class scenarios require topologically
consistent methods to represent complex geological domain
models accurately [2, 3].

In Section 2, we introduce a multi-class implicit function in
3D. However, direct surface extraction in 3D poses significant
computational challenges and inherent geometric complexity
due to multi-class interfaces. Thus, we first establish a
rigorous 2D framework as a necessary precursor to handling
3D extraction. This 2D formulation provides a robust basis
for spatially partitioning 3D space into manageable regions.
Specifically, the 2D algorithm operates on planar slices of
the 3D implicit representation.

This paper’s contribution is a novel boundary extraction
algorithm for implicit functions modelling multiple classes
in 2D. Ensuring topological consistency, a critical challenge
in the multi-class setting requires enforcing this property
from the earliest stages of the process. Consequently, we
developed a robust one-dimensional root-finding algorithm,
described in Section 3, capable of capturing transitions be-
tween all represented classes. Finally, the 2D Polygoniser in
section 4 details the adaptive spatial partitioning of R2 into
rectangles guided by the 1D root-finder. Using topological
and geometrical information derived from the roots found
on the edges of these rectangles, our approach constructs a

polygonal approximation of the implicit function, ensuring
topological accuracy and watertightness.

2 Multi-Class Implicit Functions
Let C = {C1, C2, . . . , Ck} be the set of k distinct classes or
domains1. For each point x ∈ R3, we seek to determine the
corresponding class Ci ∈ C.

The training data consists of pairs (x, Ci), where x ∈ R3

is a point in space, and Ci ∈ C is the associated class label.
A neural network is trained to approximate the mapping
from 3D points to class labels by giving a probability distri-
bution p(x) ∈ Rk, where each element pi(x) represents the
probability that the point x belongs to class Ci.

The class label for each point is determined by selecting the
smallest index corresponding to the maximum probability:

C(x) = min
{

i ∈ {1, 2, . . . , k} | pi(x) = max
j∈{1,...,k}

pj(x)
}

A key strength of this approach is that it models the
entire 3D space as a differentiable continuous field since
the neural network outputs a probability distribution for
any point x ∈ R3, unlike discrete voxel-based methods that
approximate surfaces at predefined grid points.

3 1D Root Finder
The 1D Root Finder identifies all domain transitions along
an axis-aligned line within an axis-aligned plane. Given
two points x1, x2 ∈ R, the objective is to find all transition
points xr ∈ [x1, x2], where a domain switch occurs. This
method employs an adaptive subdivision strategy guided
by a breadth-first search (BFS) approach. We classify an
interval [x1, x2] based on topological and gradient-based
information; each class is described below, followed by the
specific details of the bracketing methods and a verification
system.

• Consistent: If the interval is considered domain-
consistent, such an interval goes through a verification
mechanism to confirm this finding.

• Potential Root: An interval flagged as containing a
potential root is first detected by a topological brack-
eting method, followed by a verification mechanism
and then further localised to a single root by a linear-
interpolation-based method.

• Ambiguous: If the interval’s domain cannot be de-
termined, the algorithm subdivides precisely one more
level down.

1The words class and domain will be used interchangeably through-
out the paper.

1

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
va

lu
es

Actual Behavior of the Functions
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10
Class 11
Class 12
Class 13
Class 14

1D Root Finder Results

Figure 1: The top part shows the output of a Neural Network for all in {C1, C2, . . . , Ck}, where k = 14, densely sampled
across R1. The bottom figure displays the results of the 1D Root-Finder, i.e. the precise intervals where each class with
the maximum probability exists.

By design, the algorithm adaptively subdivides where
needed, refining intervals until either the transition points
are precisely identified or the interval resolution reaches a
predefined threshold.

3.1 Topological Bracketing
Traditional root-finding methods are generally effective for
binary transitions. However, our problem deals with k
distinct classes (k ≥ 2), where multiple, closely spaced
domain transitions can occur along a single axis-aligned line.
This complexity requires a method that accurately identifies
all transitions and maintains correct topological ordering.

We introduce a topological bracketing method tailored for
multi-class transitions, capable of capturing complex inter-
actions while adapting to the geometry of the transitions.

Let [x1, x2] ⊂ R be an interval, and consider a neural
network function f : R3 → [0, 1]k, where for each point
x ∈ R3, f(x) = [f1(x), f2(x), . . . , fk(x)] represents the prob-
abilities associated with classes C1, C2, . . . , Ck, satisfying∑k

i=1 fi(x) = 1.
At each endpoint x ∈ {x1, x2}, we rank the classes based

on their probabilities fi(x) in decreasing order. In case of
ties (equal probabilities), we prioritise the class with the
smallest index. Let i1, i2 denote the indices of the top two
classes at x1, and j1, j2 denote the indices of the top two
classes at x2. The classification of the interval [x1, x2] is
then defined as:

classify(x1, x2) =


consistent, if i1 = j1,

potential root, if i1 = j2 and j1 = i2,

ambiguous, otherwise.

In Figure 2, we can observe how the topological bracket-
ing method will help localise the domain transition. Start-
ing with the interval [−4, 4], which is an ambiguous case
and is further bisected. The first child interval [−4, 0] ap-
pears consistent, whereas the [0, 4] is ambiguous again.
When [0, 4] is bisected further we have [2, 4] which appears

4 3 2 1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

C1
C2
C3

Figure 2: The graph depicts the behaviour of classes C1, C2,
and C3 on a 1D axis in the interval [−4, 4]. The domain
transition occurs in the interval [0, 2], which the 1D algorithm
eventually localises using the topological bracketing method.

consistent and [0, 2] which appears to have a potential
root signalling a domain transition.

3.2 Gradient-Based Localisation
We introduce a gradient-based linear projection technique to
further localise roots identified as potential by the topological
bracketing method. This method refines the root’s position
before applying precise root-finding algorithms such as the
Newton–Raphson or bisection methods. It effectively handles
challenges like multiple roots within an interval and mitigates
issues arising from high-frequency variations in the neural
network outputs.

Given an interval [x1, x2] containing a potential root be-
tween two contending classes Ca and Cb, we define the
function:

g(x) = fCa
(x)− fCb

(x),

where fCa
(x) and fCb

(x) are the probabilities assigned by
the neural network f to classes Ca and Cb, respectively.

We approximate g(x) near x1 and x2 using linear expan-
sions:

g(x) ≈ g(x1) + g′(x1)(x− x1),
g(x) ≈ g(x2) + g′(x2)(x− x2),

2

where g′(x) denotes the derivative of g with respect to x.
Solving g(x) = 0 for each approximation yields projected

root estimates:
x∗

1 = x1 −
g(x1)
g′(x1) ,

x∗
2 = x2 −

g(x2)
g′(x2) .

These projections indicate where the tangents at x1 and x2
intersect the x-axis, providing refined estimates of the root
location.

We define δ = x2 − x1 as the width of the interval. To
assess the likelihood of a root within [x1, x2], we consider
the following criteria:

• Definite Root Within Interval: If both projected
points satisfy x1 ≤ x∗

i ≤ x2 for i = 1, 2, and there is a
sign change over the interval, i.e.,

g(x1) · g(x2) < 0,

a root is highly likely within [x1, x2]. We proceed with
the Newton–Raphson method, starting from x1, due to
the high confidence in the root’s presence.

• Possible Root Near Interval: If at least one of the
projected points satisfies x∗

i ∈ [x1−δ, x2 +δ] for i = 1, 2,
or if there is a sign change (g(x1) · g(x2) < 0), a root
may be present near the interval boundaries.

• Unlikely Root: If neither projected point lies within
[x1 − δ, x2 + δ] and there is no sign change (i.e., g(x1) ·
g(x2) > 0), it is unlikely that a root exists within
[x1, x2].

10 5 0 5 10 15 20

x

g(
x)

 a
nd

 T
an

ge
nt

s

g(x)
Tangent at x1
Tangent at x2
Interval [x1, x2]
Projected Roots x *

1 , x *
2

Regions [x1 , x1] and [x2, x2 +]

x1

x2

x *
1

x *
2

+

Figure 3: Illustration of the gradient-based localisation ap-
proach for root finding. The figure demonstrates the scenario
where g(x) exhibits multiple domain transitions, with tan-
gents plotted at x1 and x2. The regions [x1 − δ, x1] and
[x2, x2 + δ] are shown in yellow, while the interval [x1, x2] is
in green, indicating the interval under consideration for root
localisation. The plot captures a potential root classification
since the signs of g(x) change at x1 and x2, and not both
projected intersections x∗

1 and x∗
2 lie in the green area.

3.3 Verification of interval
The verification technique confirms deterministic classifica-
tions before advancing to subsequent stages of the algorithm.
The idea is to ensure the reliability of classifications, which
is crucial for accurate surface extraction from implicit func-
tions.

Verification is based on recursive subdivision, where the
parameter Vn ∈ N represents the number of subdivision
levels used for verification. In the case of R1, we take up the
examples of the consistent and potential root classifications.

For a node classified as a potential root, verification pro-
ceeds as follows:

We recursively subdivide the original node Vn levels down.
This process creates 2(Vn+1)− 2 new nodes. The verification
of this subtree involves the following checks:

• A single leaf node maintains the potential root classifi-
cation.

• All other leaf nodes are classified as consistent, ensuring
no contradictions and isolating the potential root nodes.

For a node classified as consistent, the verification in-
volves recursively subdividing the node for Vn levels and
ensuring that all resulting subnodes maintain the consistent
classification. This ensures homogeneity across subdivisions.

This general approach can be applied to R1, R2, and
R3 dimensions, making it adaptable for various contexts
throughout this work.

3.4 Algorithm Overview
Algorithm 2 in Appendix A presents a one-dimensional root-
finding algorithm that integrates the topological bracketing
method, gradient-based localisation, and verification tech-
niques. Operating on an axis-aligned interval, the algorithm
employs a breadth-first search strategy to locate roots effi-
ciently. It prioritises intervals likely to yield definitive re-
sults through a verification queue, enhancing the reliability
of classifications before applying computationally intensive
methods like gradient-based localisation. The Interval Limit
(ϵ) is typically set to approximate the smallest representable
difference in the chosen floating-point format.

4 2D Polygoniser
The 2D Polygoniser reconstructs the geometry within an
axis-aligned rectangle in R2. This is the fundamental unit of
analysis in 2D. The algorithm operates by examining these
rectangles and applying an adaptive subdivision strategy
to resolve the geometry within them. The process lever-
ages topological information, mainly focusing on domain
transitions along the edges of the rectangle.

4.1 2D Classes and Subdivision
The 1D root-finder is applied along each rectangle edge to
identify transition points where the domain classification
changes. If any edge contains more than one transition point,
the rectangle is immediately classified as ambiguous and
marked for subdivision.

For rectangles where each edge has at most one transition
point, the classification is determined based on the domain
labels at the vertices and the positions of the transition
points along the edges. The possible classifications include:

• Polygonisable: The rectangle’s topology is clear and
can be directly polygonised without further subdivision.

• Ambiguous: The topology within the rectangle is still
uncertain, requiring subdivision for resolution.

3

Polygonisable

A A

AA

(a)

A A

BB

(b)

A B

BA

(c)

A C

BC

(d)

C A

CB

(e)

B B

BA

(f)

B B

AB

(g)

B A

BB

(h)

A B

BB

(i)
Three Domains Meeting Ambiguous

A B

CC

(j)

A C

CB

(k)

A B

AB

(l)

C A

BC

(m)

C C

AB

(n)

A B

CD

(o)

Figure 4: This figure showcases all possible permutations of
the Polygonisable, Three Domains Meeting and Ambiguous
cases of a 2D rectangle.

• Three Domains Meeting (TDM): The topology
indicates three distinct domains meet at a point within
the rectangle, necessitating special handling.

Figure 4 details specific configurations and their corre-
sponding classifications.

Unlike simple bisection in 1D, 2D subdivision alternates
between the x and y directions. Let d ∈ {x, y} denote the
current subdivision direction. The set of transition points is
defined as:

Rd = {ri ∈ R | ri = πd(p),
p is a root on the edges parallel to d}

where πd denotes the projection onto the d-axis. The points
ri are sorted such that r1 < r2 < · · · < rn, with n = |Rd|.

The midpoints of consecutive transition points are given
by:

M =
{

mi = ri + ri+1

2 | i = 1, . . . , n− 1
}

.

The subdivision point m∗ is selected as:

m∗ =
{

m⌊|M |/2⌋+1, if |M | is odd,

arg maxi∈{⌊|M |/2⌋,⌊|M |/2⌋+1} ∆(mi), if |M | is even,

where ∆(mi) is the interval size associated with mi.
Based on the limited information available from its bound-

aries, the selected subdivision point m∗ represents an area of
high topological change in the geometry within the rectangle.

4.2 Triple Junction Estimation
Consider three scalar fields f1, f2, f3 : R2 → R. A triple
junction is a point (x∗, y∗) at which

f1(x∗, y∗) = f2(x∗, y∗) = f3(x∗, y∗).
When a rectangle is classified as containing such a triple

junction, we seek (x∗, y∗) to a prescribed tolerance ε > 0.
The estimation proceeds in two stages: an iterative tangent-
plane method followed by a fallback optimisation-based
approach if the former fails.

Tangent-Plane Method At an iterate (x, y), let
fi(x, y) = zi and ∇fi(x, y) = (ai, bi)⊤. Approximating
each fi linearly about (x, y) gives:

fi(X, Y) ≈ zi + ai(X − x) + bi(Y − y).
We seek (X, Y) that makes f1(X, Y) equal to f2(X, Y) and
f3(X, Y) simultaneously. However, instead of directly en-
forcing these equalities pairwise, we introduce an auxiliary
variable Z and consider the linear systems of the form:

aiX + biY − Z = aix + biy − zi, i = 1, 2, 3.

If a solution (X, Y, Z) exists, it represents a configuration
where three approximate tangent surfaces (one for each fi)
intersect consistently. In practice, we solve these three linear
equations in a least-squares sense, obtaining (X, Y, Z) that
minimizes any residual inconsistency. We then update the
iterate:

(x, y)← (X, Y),
this repeats until

√
(X − x)2 + (Y − y)2 < ε or a maximum

iteration count is reached. If this yields (x∗, y∗) inside the
rectangle with the desired precision, we accept (x∗, y∗).

Optimisation-Based Fallback If the tangent-plane
method does not converge within the rectangle, we min-
imise the objective function:

G(x, y) =
∑

1≤i<j≤3

(
fi(x, y)− fj(x, y)

)2
.

The optimisation problem is:
(x∗, y∗) = arg min

(x,y)∈bounds
G(x, y).

Using a derivative-free optimisation algorithm (e.g.,
Nelder–Mead), we accept (x∗, y∗) if:

G(x∗, y∗) < ε and (x∗, y∗) ∈ bounds.
Where the bounds are the extent of the rectangle.

This two-stage approach ensures robustness by initially
leveraging gradient information for efficient convergence and
subsequently employing a general optimisation strategy to
guarantee solution reliability.

4.3 2D Verification
Recall from Subsection 2.3 that in the 1D root-finder, de-
scending Vn levels generates 2(Vn+1) − 2 new nodes. The
same principle applies in two dimensions, with the distinc-
tion that subdivision occurs at a non-deterministic position,
as governed by the method outlined in Subsection 3.1.

To verify the Polygonisable class in two dimensions, all
nodes in its verification subtree must maintain the same
classification. For the TMD class, exactly one leaf node
must exhibit the triple-domain meeting condition, while all
remaining leaf nodes are classified as Polygonisable.

4

4.4 Geometric Criteria
The geometric criteria refine the polygonisation process by
selectively subdividing edges that fail to capture local ge-
ometric complexity. Verified edges are part of rectangles
classified as either Polygonisable or TDM, where each edge
approximates the contour f = 0, defined as the scalar field
difference f = fc1 − fc2 between two classes meeting along
the edge.

Consider a verified edge with endpoints (x1, y1) and
(x2, y2). At each endpoint, the gradient of f is evaluated as
∇f(xi, yi) = (ai, bi) for i = 1, 2. The tangent lines at these
endpoints are:

ai(x− xi) + bi(y − yi) = 0, i = 1, 2.

Solving these equations provides the intersection point
(xI , yI), which represents the intersection of the tangent
approximations to the contour f = 0 at the edge endpoints.

Let L denote the length of the edge connecting (x1, y1) and
(x2, y2), and let δ > 0 be a user-defined geometric threshold.
Let d be the perpendicular distance from (xI , yI) to the line
segment connecting (x1, y1) and (x2, y2). If both d > δ and
L > δ, the rectangle is subdivided to enhance the fidelity of
the approximation.

In the case of subdivision, the rectangle is divided precisely
at the midpoint of the edge being evaluated, either along the
x-axis or y-axis, depending on the edge’s orientation. This
adaptive criterion ensures that regions with high geometric
complexity are refined while simpler areas remain coarsely
represented.

(x1, y1)

(x2, y2)

(xI, yI)

fc1 fc2

Naive Edge of length L
Tangents {T1, T2}
Intersection Point
Distance d
Points {x1, x2}; {x2, y2}

Figure 5: Illustration of method imposing geometric criteria
on a naive edge represented in yellow, which is trying to
approximate the boundary in purple.

4.5 2D Algorithm Overview
In Algorithm 1, we outline the adaptive subdivision mecha-
nism employed to partition a rectangle in R2 into regions of
recognisable topological cases. This is followed by systemati-
cally refining the geometry to a desired level of detail, finally
producing a network of edges representing the boundaries
between classes.

1. Classification: The algorithm begins by initialising
two stacks: a verification stack V for rectangles classified
as either Polygonisable or TDM, and a normal stack
S for ambiguous rectangles. These classifications are

detailed in Subsection 4.1. An empty edge store E
is prepared to collect the final edge network and its
associated class transitions.

2. Processing Stacks: The verification stack V is priori-
tised over the normal stack S:

• Verification Stack: Rectangles in V undergo ver-
ification using verify_rectangle, as described in
Subsection 4.3. For TDM rectangles, the triple junc-
tion is estimated using find_triple_junction
(Subsection 4.2) before applying the geo-
metric criterion (apply_geometric_criterion,
Subsection 4.4) and connecting edges with
connect_edges.

• Normal Stack: Rectangles in S are subdivided
using subdivide_rectangle, as detailed in Sub-
section 4.1. Child rectangles are classified, with
Polygonisable and TDM children added to V , and
ambiguous children added to S.

Algorithm 1: Two-Dimensional Polygonisation
Input : Rectangle extents Rroot, verification depth Vn,

geometric criteria threshold δ, subdivision limit ϵ
Output : Edge network E
def 2D Polygoniser(Rroot, Vn, δ, ϵ):

Initialise:
Normal stack S ← ∅, Verification stack V ← ∅, Edge store
E ← ∅

C ← classify_rectangle(Rroot)
if C ∈ {Polygonisable, TDM} :
V.push(Rroot) ; // Add to verification stack

else:
S.push(Rroot) ; // Add to normal stack

while V ̸= ∅ or S ̸= ∅ :
if V ̸= ∅ :

R← V.pop()
if subdivide_rectangle(R) < ϵ :

continue ; // Subdivision limit reached
V ← verify_rectangle(R, Vn)
if C = TDM :

find_triple_junction(R) ; // Find triple
junction

apply_geometric_criterion(R, δ) ; // Apply
geometric criterion
E ← connect_edges(R) ; // Store edges

else:
R← S.pop()
if subdivide_rectangle(R) < ϵ :

continue ; // Subdivision limit reached
R1, R2 ← subdivide_rectangle(R)
for Rchild ∈ {R1, R2} in

Cchild ← classify_rectangle(Rchild)
if Cchild ∈ {Polygonisable, TDM} :
V.push(Rchild)

else:
S.push(Rchild)

return E

5 Results
In this section, we present the effectiveness of the boundary
extraction of the 2D polygoniser. We use geological domain
data to create an implicit representation2 f : R3 → [0, 1]k
as explained in the previous sections. The use of geologi-
cal data shows the real-world effectiveness of our method.
Moreover, its complex nature tests heavily for topological

2Due to the proprietary nature of the data, neural network archi-
tecture and training details, these can not be released publicly.

5

Sampled 1000 x 1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Extracted boundaries by our algorithm

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: The top row shows slices from a geological model, selected for their complexity, sampled at a resolution 1000x1000
from the neural network. The bottom row shows the 2D polygoniser’s result.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: The first column showcases the output of the
2D polygoniser when no geometric criteria were set. The
second column shows the output when the geometric criteria
threshold was set to 1e-3.

consistency and adaptive behaviour, making it a fertile eval-
uation ground.

5.1 Adaptive Behaviour
As noticed in the first column of Figure 7, the adaptive
subdivision criteria and verification mechanism allow the
algorithm to focus on complex areas and quickly exit topo-
logically uninteresting areas like big expanses of the same
domain. Specifically, the ability to subdivide in either direc-
tion and choose the point of subdivision based on precise
topological information about the borders of a rectangle
proves very effective at discerning underlying complexity.
The verification level parameter Vn helps capture details
where the topology can give deceiving signals (i.e. signalling
a Polygonisable class), leading to missing geometry.

5.2 Topological Consistency
The 1D root-finder’s precision at finding class transitions
alongside strict honouring of these 1D topological roots in
2D when subdividing enables features like long smooth veins,
no holes, and no self-intersections, as visually observed in
Figure 6. Another important aspect of maintaining topolog-
ical consistency is reliably finding the intersection point of
three domains. This removes any ambiguity associated with
the boundaries originating from that triple junction point,
as observed in Figure 6.

5.3 Geometric Criteria
The algorithm’s ability to impose a geometric condition on
each edge approximating a class boundary allows a thorough
representation of detail. The geometric criteria are only

6

imposed after we are satisfied with the topological integrity
of the area. Figure 7 displays the change in boundaries
after geometric criteria are imposed. We can also observe
the additional subdivisions of existing rectangles (also in an
adaptive way) for providing more detail to edges that did
not meet the stringent geometric criteria threshold δ.

6 Conclusion and future work
This work introduces a novel boundary extraction method
from multi-class implicit representations in 2D. The algo-
rithm is developed from the ground up to cater for topologi-
cally consistent solutions with no holes and self-intersections.
Furthermore, geometric constraints can be imposed on the
edges, approximating the boundaries for finer detail.

In future work, this 2D algorithm will be used for isosur-
face extraction from multi-class implicit representations in
3D, taking an analogous role to the 1D root-finder’s role in
2D. This is also the reasoning behind stringent topological
consistency requirements from the 2D algorithm.

7

References
[1] Bruno Rodrigues De Araújo, Daniel S Lopes, Pauline

Jepp, Joaquim A Jorge, and Brian Wyvill. A survey
on implicit surface polygonization. ACM Computing
Surveys (CSUR), 47(4):1–39, 2015.

[2] Ítalo Gomes Gonçalves, Sissa Kumaira, and Felipe
Guadagnin. A machine learning approach to the
potential-field method for implicit modeling of geologi-
cal structures. Computers & Geosciences, 103:173–182,
2017.

[3] Michael Hillier, Florian Wellmann, Eric de Kemp, Ernst
Schetselaar, Boyan Brodaric, and Karine Bédard. Geoinr
1.0: an implicit neural representation network for three-
dimensional geological modelling. Geoscientific Model
Development Discussions, 2023:1–40, 2023.

[4] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In
Seminal graphics: pioneering efforts that shaped the field,
pages 347–353. 1998.

[5] Lars Mescheder, Michael Oechsle, Michael Niemeyer,
Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4460–4470, 2019.

[6] Vincent Sitzmann, Julien Martel, Alexander Bergman,
David Lindell, and Gordon Wetzstein. Implicit neural rep-
resentations with periodic activation functions. Advances
in neural information processing systems, 33:7462–7473,
2020.

8

A Algorithm: One-Dimensional
Root-Finding

Algorithm 2: One-Dimensional Root-Finding
Input :

• Interval Iroot = [xstart, xend]
• Projection axis (e.g., x or y) and fixed dimension value
• Verification depth Vn

• Interval limit ϵ

Output : Positions of roots and class transitions
def root_finder(interval, axis, fixed_value, verification_depth,
interval_limit):

Qv ← [];
Qn ← [];
C ← classify_interval(interval, axis, fixed_value);
if C in {"consistent", "potential root"} :

enqueue(Qv, interval);
else:

enqueue(Qn, interval);
while Qv or Qn :

if Qv :
I ← dequeue(Qv);
if interval_length(I) < interval_limit :

continue;
S ← subdivide_interval(I, Vn);
V ← verify_intervals(S, axis, fixed_value);
if V :

if C == "potential root" :
R ← gradient_localisation(I, axis,

fixed_value);
record_root_and_transition(R);

continue;
else:

enqueue(Qn, I);
else:

I ← dequeue(Qn);
if interval_length(I) < interval_limit :

continue;
left, right ← subdivide_interval(I, 1);
for child in left, right in

C_child ← classify_interval(child, axis,
fixed_value);

if C_child in {"consistent", "potential root"} :
enqueue(Qv, child);

else:
enqueue(Qn, child);

9

